UDDEHOLM ARNE®

HADVATION GLOBAL COMMITMENT KNOWLEDGE UNDERETANDING HADDING HADDING TRUET IS SOMETHING YOU FURN, EVEN

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose.

Classified according to EU Directive 1999/45/EC For further information see our "Material Safety Data Sheets".

Edition 7, 09.2012

The latest revised edition of this brochure is the English version, which is always published on our web site www.uddeholm.com

General

Uddeholm Arne general purpose oil-hardening tool steel is a versatile manganese-chromiumtungsten steel suitable for a wide variety of cold-work applications. Its main characteristics include:

- good machinability
- · good dimensional stability in hardening
- a good combination of high surface hardness and toughness after hardening and tempering

These characteristics combine to give a steel suitable for the manufacture of tooling with good tool life and production economy.

Uddeholm Arne can be supplied in various finishes including hot-rolled, pre-machined, fine-machined and precision ground. It is also available in the form of hollow bar.

Typical analysis %	C 0.95	Si 0.3	Mn 1.1	Cr 0.45	W 0.45	V 0.1
Standard specification	AISI O1					
Delivery condition	Soft annealed approx. 190 HB					
Colour code	Yellow					

Applications

Tools for	Material thick	ness	HRC
Cutting Blanking, punching, piercing, cropping, shearing, trimming clipping	up to 3 mm 3– 6 mm (1/8- 6–10 mm (1/4-	-1/4")́	60–62 56–60 54–56
Short cold shears			54–60
Clipping and trimming to for forgings	58–60 56–58		
Forming Bending, raising, drawing, spinning and flow formin	56–62		
Small coining dies			56–60
Gauges, measuring tools Turning centres Guide bushes, ejector pins, high duty, small/medium drills and taps Small gear wheels, pistons, nozzles, cams			58–62

Properties

Physical data

Hardened and tempered to 62 HRC. Data at ambient temperature and elevated temperature.

Temperature	20°C (68°F)	200°C (375°F)	400°C (750°F)
Density kg/m³ lbs/in³	7 800 0.282	7 750 0.280	7 700 0.278
Modulus of elasticity N/mm ² kp/mm ² tsi psi	190 000 19 500 12 500 28 x 10 ⁶	185 000 19 000 12 200 27 x 10 ⁶	170 000 17 500 11 200 25 x 10 ⁶
Coefficient of thermal expansion per °C from 20°C per °F from 68°F		11.7 x 10 ⁻⁶ 6.5 x 10 ⁻⁶	11.4 x 10 ⁻⁶ 6.3 x 10 ⁻⁶
Thermal conductivity W/m °C Btu in/ft² h °F	32 222	33 229	34 236
Specific heat J/kg C Btu/lb. °F	460 0.11		

Compressive strength

The figures are to be considered approximate.

	Compressive strength			
Hardness	Rm	R _c 0.2		
HRC	N/mm ²	N/mm ²		
62	3000	2200		
60	2700	2150		
55	2200	1800		
50	1700	1350		

Clipping and edging tool in Uddeholm Arne tool steel to clip and form edge of 0.914 mm (0.036") thick stainless steel container approx. $254 \times 152 \times 203$ mm (10" x 6" x 8").

Heat treatment

Soft annealing

Protect the steel and heat through to 780° C (1435°F). Then cool in the furnace at 15°C (27°F) per hour to 650°C (1200°F), then freely in air.

Stress-relieving

After rough machining the tool should be heated through to 650° C (1200° F), holding time 2 hours. Cool slowly to 500° C (930° F) then freely in air.

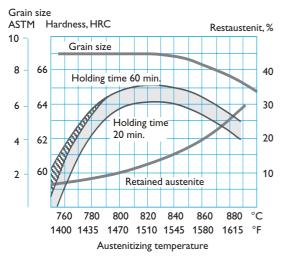
Hardening

Preheating temperature: 600–700°C (1110– 1290°F)

Austenitizing temperature: 790–850°C (1450– 1560°F)

Tempe	rature	Soaking [*] time	Hardness before
°C	°F	minutes	tempering
800	1470	30	approx. 65 HRC
825	1520	20	approx. 65 HRC
850	1560	15	approx. 63 HRC

* Soaking time = time at austenitizing temperature after the tool is fully heated through

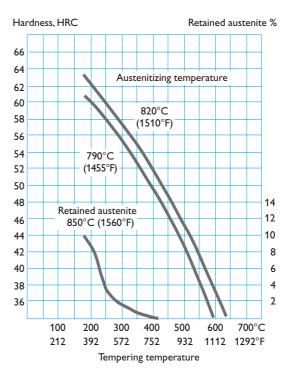

Protect the part against decarburization and oxidation during hardening.

Quenching media

- Oil
- Martempering bath. Temperature 180–225°C (360–435°F), then cooling in air

Note: Temper the tool as soon as its temperature reaches $50-70^{\circ}C$ (120–160°F).

HARDNESS AS A FUNCTION OF HARDENING TEMPERATURE



1

Tempering

Choose the tempering temperature according to the hardness required by reference to the tempering graph. Temper twice with intermediate cooling to room temperature. Lowest tempering temperature 180°C (360°F). Holding time at temperature minimum 2 hours.

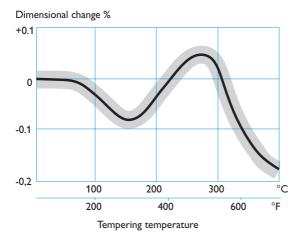
TEMPERING GRAPH

Above tempering curves are obtained after heat treatment of samples with a size of $15 \times 15 \times 40$ mm, quenched in oil. Lower hardness can be expected after heat treatment of tools and dies due to factors like actual tool size and heat treatment parameters.

Martempering

Tools at austenitizing temperature are immersed in the martempering bath for the time indicated, then cooled in air to not lower than 100° C (210° F). Temper immediately as with oil-guenching.

	enitizing erature °F	Temı martem bat °C	npering	Holding time in martemp. bath minutes	Surface hardness prior to tempering (obtained by martempering)
825	1520	225	435	max. 5	64±2 HRC
825	1520	200	390	max. 10	63±2 HRC
825	1520	180	355	max. 20	62±2 HRC
850	1560	225	435	max. 10	62±2 HRC


Dimensional changes during hardening

Sample plate, 100 x 100 x 25 mm, 4" x 4" x 1"

		Width %	Length %	Thickness %
Oil hardening from	min.	+0.03	+0.04	_
830°C (1530°F)	max.	+0.10	+0.10	+0.02
Martempering from	min.	+0.04	+0.06	+0.02
830°C (1530°F)	max.	+0.12	+0.12	

Dimensional changes during tempering

Sample plate, 100 x 100 x 25 mm, 4" x 4" x 1"

Note: The dimensional changes on hardening and tempering should be added together. Recommended allowance 0.25%.

Sub-zero treatment and aging

Pieces requiring maximum dimensional stability should be sub-zero treated and/or artificially aged, as volume changes may occur in the course of time. This applies, for example, to measuring tools like gauges and certain structural components.

SUB-ZERO TREATMENT

Immediately after quenching the piece should be sub-zero treated to between -70 and -80°C (-95 to -110°F), soaking time 3–4 hours, followed by tempering or aging. Sub-zero treatment will give a hardness increase of 1–3 HRC.

Avoid intricate shapes as there will be risk of cracking.

AGEING

Tempering after quenching is replaced by ageing at 110-140 °C (230-285 °F). Holding time 25-100 hours.

Blanking tool made from fine-machined Uddeholm Arne tool steel.

Machining recommendations

The following tables give machining data for Uddeholm Arne in soft annealed condition. Hardness 190 HB. The data are to be considered as guiding values, which must be adapted to existing local conditions.

Turning

Cutting data	Turning wit	Turning with high speed steel	
parameters	Rough turning	Fine turning	Fine turning
Cutting speed (v _c)			
m/min f.p.m.	160–210 525–690	210–260 690–850	20–25 65–80
Feed (f) mm/r i.p.r.	0.2–0.4 0.008–0.016	0.05–0.2 0.002–0.008	0.05–0.3 0.002–0.01
Depth of cut (a _p) mm inch	2–4 0.08–0.2	0.5–2 0.02–0.08	0.5–3 0.02–0.10
Carbide designation ISO	P20–P30 Coated carbide	P10 Coated carbide or cermet	_

Drilling

HIGH SPEED STEEL TWIST DRILL

Drill	diameter	Cutting speed (v _c)		Fe	eed (f)
mm	inch	m/min f.p.m.		mm/r	i.p.r.
- 5 5-10 10-15 15-20	-3/16 3/16-3/8 3/8-5/8 5/8-3/4	15–17* 15–17* 15–17* 15–17*	49–56* 49–56* 49–56* 49–56*	0.20–0.30 0.30–0.35	0.003-0.008 0.008-0.012 0.012-0.014 0.014-0.016

* For coated HSS drills $v_c = 26-28$ m/min. (85-90 f.p.m.)

CARBIDE DRILL

	Type of drill				
Cutting data parameters	Indexable insert	Solid carbide	Taladro con Brazed carbide ¹⁾		
Cutting speed (v _c) m/min f.p.m.	200–220 655–720	110–140 360–460	70–90 230–295		
Feed (f) mm/r i.p.r.	0.05–0.25 ²⁾ 0.002–0.01 ²⁾	0.10-0.25 ³⁾ 0.004-0.01 ³⁾	0.15–0.25 ⁴⁾ 0.006–0.01 ⁴⁾		

¹⁾ Drill with replaceable or brazed carbide tip

 $^{\rm 2)}$ Feed rate for drill diameter 20–40 mm (0.8"–1.6")

³⁾ Feed rate for drill diameter 5–20 mm (0.2"–0.8")

⁴⁾ Feed rate for drill diameter 10–20 mm (0.4"–0.8")

Milling

FACE AND SQUARE SHOULDER MILLING

Cutting data	Milling with carbide			
Cutting data parameters	Rough milling	Fine milling		
Cutting speed (v _c) m/min f.p.m.	170–250 560–820	250–290 820–950		
Feed (f _z) mm/tooth inch/tooth	0,2–0,4 0.008–0.016	0,10–0,2 0.004–0.008		
Depth of cut (a _p) mm inch	2–5 0.08–0.2	-2 -0.08		
Carbide designation ISO	P20–P40 Coated carbide	P10–P20 Coated carbide or cermet		

END MILLING

	Type of milling				
Cutting data parameters	Solid carbide	Carbide indexable insert	High speed steel		
Cutting speed (v _c) m/min f.p.m.	150–190 490–620	160–220 525–720	25–30 ¹⁾ 80–100 ¹⁾		
Feed (f _z) mm/tooth inch/tooth	0.03–0.2 ²⁾ 0.0012–0.008 ²⁾	0.08–0.2 ²⁾ 0.003–0.008 ²⁾	0.05–0.35 ²⁾ 0.002–0.014 ²⁾		
Carbide designation ISO	K20, P40	P20-P30			

¹⁾ For coated end mills $v_c = 45-50$ m/min. (150-160 f.p.m.)

²⁾ Depending on radial depth of cut and cutter diameter

Grinding

General grinding wheel recommendation for Uddeholm Arne is given below. More information can be found in the Uddeholm publication "Grinding of Tool Steel".

Type of grinding	Soft annealed condition	Hardened condition
Face grinding straight wheel	A 46 H V	A 46 H V
Face grinding segments	A 24 G V	A 36 G V
Cylindrical grinding	A 46 L V	A 60 K V
Internal grinding	A 46 J V	A 60 I V
Profile grinding	A 100 L V	A 120 J V

Welding

Good results when welding tool steel can be achieved if proper precautions are taken during welding (elevated working temperature, joint preparation, choice of consumables and welding procedure). If the tool is to be polished or photo-etched, it is necessary to work with an electrode type of matching composition.

Welding method	Working temperature	Consumables	Hardness after welding	
MMA (SMAW)	200–250°C	AWS E312 84.52 UTP 67S Castolin EutecTrode 2 Castolin EutecTrode N 102	300 HB ESAB OK 53–54 HRC 55–58 HRC 54–60 HRC 54–60 HRC	
TIG	200–250°C	AWS ER312 UTPA 67S UTPA 73G2 CastoTig 4 5303W	300 HB 55–58 HRC 53–56 HRC 60–64 HRC	

Electrical-discharge machining

If spark-erosion, EDM, is performed in the hard-ened and tempered condition, the tool should then be given an additional temper at approx. 25°C (50°F) below the previous tempering temperature.

Further information

Please contact your local Uddeholm office for further information on the selection, heat treatment, application and availability of Uddeholm tool steel.

Relative comparison of Uddeholm cold work tool steel

MATERIAL PROPERTIES AND RESISTANCE TO FAILURE MECHANISMS

	Hardness/				Resistance to		Fatigue cracking resistance	
Uddeholm grade	Resistance to plastic deformation	Machin- ability	Grind- ability	Dimension stability	Abrasive wear	Adhesive wear	Ductility/ resistance to chipping	Toughness/ gross cracking
ARNE								
CALMAX								
CALDIE (ESR)								
RIGOR								
SLEIPNER								
SVERKER 21								
SVERKER 3								
VANADIS 4 EXTRA								
VANADIS 6								
VANADIS 10								
VANADIS 23								
VANCRON 40								

The Conventional Tool Steel Process

The starting material for our tool steel is carefully selected from high quality recyclable steel. Together with ferroalloys and slag formers, the recyclable steel is melted in an electric arc furnace. The molten steel is then tapped into a ladle.

The de-slagging unit removes oxygen-rich slag and after the deoxidation, alloying and heating of the steel bath are carried out in the ladle furnace. Vacuum degassing removes elements such as hydrogen, nitrogen and sulphur.

In uphill casting the prepared moulds are filled with a controlled flow of molten steel from the ladle. From this, the steel goes directly to our rolling mill or to the forging press to be formed into round or flat bars.

HEAT TREATMENT

Prior to delivery all of the different bar materials are subjected to a heat treatment operation, either as soft annealing or hardening and tempering. These operations provide the steel with the right balance between hardness and toughness.

MACHINING

Before the material is finished and put into stock, we also rough machine the bar profiles to required size and exact tolerances. In the lathe machining of large dimensions, the steel bar rotates against a stationary cutting tool. In peeling of smaller dimensions, the cutting tools revolve around the bar.

To safeguard our quality and guarantee the integrity of the tool steel we perform both surface- and ultrasonic inspections on all bars. We then remove the bar ends and any defects found during the inspection.

Network of excellence

UDDEHOLM is present on every continent. This ensures you high-quality Swedish tool steel and local support wherever you are. ASSAB is our wholly-owned subsidiary and exclusive sales channel, representing Uddeholm in the Asia Pacific area. Together we secure our position as the world's leading supplier of tooling materials.

PROBLEMS AUTOHOTIVE

UDDEHOLM is the world's leading supplier of tooling materials. This is a position we have reached by improving our customers' everyday business. Long tradition combined with research and product development equips Uddeholm to solve any tooling problem that may arise. It is a challenging process, but the goal is clear – to be your number one partner and tool steel provider.

Our presence on every continent guarantees you the same high quality wherever you are. ASSAB is our wholly-owned subsidiary and exclusive sales channel, representing Uddeholm in the Asia Pacific area. Together we secure our position as the world's leading supplier of tooling materials. We act worldwide, so there is always an Uddeholm or ASSAB representative close at hand to give local advice and support. For us it is all a matter of trust – in long-term partnerships as well as in developing new products. Trust is something you earn, every day.

For more information, please visit www.uddeholm.com, www.assab.com or your local website.

